Obtaining a Built-in Algorithm

Sample Code

In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.

from modelarts.session import Session
from modelarts.estimator import Estimator
session = Session()
algo_info = Estimator.get_built_in_algorithms(modelarts_session=session)

Parameter Description

Table 1 get_built_in_algorithms request parameters

Parameter

Mandatory

Type

Description

modelarts_session

Yes

Object

Session object. For details about the initialization method, see Session Authentication.

Table 2 get_built_in_algorithms response parameters

Parameter

Type

Description

error_msg

String

Error message when the API call fails.

This parameter is not included when the API call succeeds.

error_code

String

Error code when the API fails to be called. For details, see Error Codes in ModelArts API Reference.

This parameter is not included when the API call succeeds.

model_total_count

Integer

Number of models

models

JSON Array

Parameter list of a model

is_success

Boolean

Whether the API call succeeds

Table 3 models parameters

Parameter

Type

Description

model_id

Integer

Model ID

model_name

String

Model name

model_usage

Integer

Model usage. The options are as follows:

  • 1: image classification

  • 2: object class and location

  • 3: image semantic segmentation

  • 4: natural language processing

model_precision

String

Model precision

model_size

Long

Model size, in bytes

model_train_dataset

String

Model training dataset

model_dataset_format

String

Dataset format required by a model

model_description_url

String

URL of the model description

parameter

JSON Array

Running parameters of a model. It is a collection of label-value pairs. This parameter is a container environment variable when a job uses a custom image. For details, see the sample request.

create_time

Long

Time when a model is created

engine_id

Long

Engine ID of a model

engine_name

String

Engine name of a model

engine_version

String

Engine version of a model