Querying the Details About a Training Job¶
Function¶
This API is used to query the details about a training job.
Debugging¶
You can debug this API through automatic authentication in or use the SDK sample code generated by API Explorer.
URI¶
GET /v2/{project_id}/training-jobs/{training_job_id}
Parameter | Mandatory | Type | Description |
---|---|---|---|
project_id | Yes | String | Project ID. For details, see Obtaining a Project ID and Name. |
training_job_id | Yes | String | ID of a training job. |
Request Parameters¶
None
Response Parameters¶
Status code: 200
Parameter | Type | Description |
---|---|---|
kind | String | Training job type, which is job by default. Options:
|
metadata | JobMetadata object | Metadata of a training job. |
status | Status object | Status of a training job. You do not need to set this parameter when creating a job. |
algorithm | JobAlgorithmResponse object | Algorithm used by a training job. Options:
|
tasks | Array of TaskResponse objects | List of tasks in heterogeneous training jobs. |
spec | spec object | Specifications of a training job. |
Parameter | Type | Description |
---|---|---|
id | String | Training job ID, which is generated and returned by ModelArts after the training job is created. |
name | String | Name of a training job. The value must contain 1 to 64 characters consisting of only digits, letters, underscores (_), and hyphens (-). |
workspace_id | String | Workspace where a job is located. The default value is 0. |
description | String | Training job description. The value must contain 0 to 256 characters. The default value is NULL. |
create_time | Long | Timestamp when a training job is created, in milliseconds. The value is generated and returned by ModelArts after the job is created. |
user_name | String | Username for creating a training job. The username is generated and returned by ModelArts after the training job is created. |
annotations | Map<String,String> | Declaration template of a training job. For heterogeneous jobs, the default value of job_template is Template RL. For other jobs, the default value is Template DL. |
Parameter | Type | Description |
---|---|---|
phase | String | Level-1 status of a training job. The value is stable. Options: Creating Pending Running Failed Completed, Terminating Terminated Abnormal |
secondary_phase | String | Level-2 status of a training job. The value is unstable. Options: Creating Queuing Running Failed Completed Terminating Terminated CreateFailed TerminatedFailed Unknown Lost |
duration | Long | Running duration of a training job, in milliseconds |
node_count_metrics | Array<Array<Integer>> | Node count changes during the training job running period. |
tasks | Array of strings | Tasks of a training job. |
start_time | String | Start time of a training job. The value is in timestamp format. |
task_statuses | Array of task_statuses objects | Status of a training job task. |
Parameter | Type | Description |
---|---|---|
task | String | Name of a training job task. |
exit_code | Integer | Exit code of a training job task. |
message | String | Error message of a training job task. |
Parameter | Type | Description |
---|---|---|
id | String | Algorithm used by a training job. Options:
|
name | String | Algorithm name. |
subscription_id | String | Subscription ID of a subscribed algorithm, which must be used with item_version_id |
item_version_id | String | Version ID of the subscribed algorithm, which must be used with subscription_id |
code_dir | String | Code directory of a training job, for example, /usr/app/. This parameter must be used together with boot_file. If id or subscription_id+item_version_id is set, leave it blank. |
boot_file | String | Boot file of a training job, which must be stored in the code directory, for example, /usr/app/boot.py. This parameter must be used with code_dir. Leave this parameter blank if id, or subscription_id and item_version_id are specified. |
autosearch_config_path | String | YAML configuration path of auto search jobs. An OBS URL is required. |
autosearch_framework_path | String | Framework code directory of auto search jobs. An OBS URL is required. |
command | String | Boot command used to start the container of the custom image used by a training job. You can set this parameter to code_dir. |
parameters | Array of Parameter objects | Running parameters of a training job. |
policies | policies object | Policies supported by jobs. |
inputs | Array of Input objects | Input of a training job. |
outputs | Array of Output objects | Output of a training job. |
engine | engine object | Engine of a training job. Leave this parameter blank if the job is created using id of the algorithm in algorithm management, or subscription_id+item_version_id of the subscribed algorithm. |
local_code_dir | String | Local directory to the training container to which the algorithm code directory is downloaded. Ensure that the following rules are complied with: - The directory must be in the /home directory. - In v1 compatibility mode, the current field does not take effect. - When code_dir is prefixed with file://, the current field does not take effect. |
working_dir | String | Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
environments | Array of Map<String,String> objects | Environment variables of a training job. The format is key: value. Leave this parameter blank. |
Parameter | Type | Description |
---|---|---|
name | String | Parameter name. |
value | String | Parameter value. |
description | String | Parameter description. |
constraint | constraint object | Parameter constraint. |
i18n_description | i18n_description object | Internationalization description. |
Parameter | Type | Description |
---|---|---|
type | String | Parameter type. |
editable | Boolean | Whether the parameter is editable. |
required | Boolean | Whether the parameter is mandatory. |
sensitive | Boolean | Whether the parameter is sensitive. |
valid_type | String | Valid type. |
valid_range | Array of strings | Valid range. |
Parameter | Type | Description |
---|---|---|
language | String | Internationalization language. |
description | String | Description. |
Parameter | Type | Description |
---|---|---|
auto_search | auto_search object | Hyperparameter search configuration. |
Parameter | Type | Description |
---|---|---|
skip_search_params | String | Hyperparameter parameters that need to be skipped. |
reward_attrs | Array of reward_attrs objects | List of search metrics. |
search_params | Array of search_params objects | Search parameters. |
algo_configs | Array of algo_configs objects | Search algorithm configurations. |
Parameter | Type | Description |
---|---|---|
name | String | Metric name. |
mode | String | Search direction.
|
regex | String | Regular expression of a metric. |
Parameter | Type | Description |
---|---|---|
name | String | Hyperparameter name. |
param_type | String | Parameter type.
|
lower_bound | String | Lower bound of the hyperparameter. |
upper_bound | String | Upper bound of the hyperparameter. |
discrete_points_num | String | Number of discrete points of a continuous hyperparameter. |
discrete_values | Array of strings | List of discrete hyperparameter values. |
Parameter | Type | Description |
---|---|---|
name | String | Name of the search algorithm. |
params | Array of AutoSearchAlgoConfigParameter objects | Search algorithm parameters. |
Parameter | Type | Description |
---|---|---|
key | String | Parameter key. |
value | String | Parameter value. |
type | String | Parameter type. |
Parameter | Type | Description |
---|---|---|
name | String | Name of the data input channel. |
description | String | Description of the data input channel. |
local_dir | String | Local directory of the container to which the data input channel is mapped. |
remote | InputDataInfo object | Data input. Options:
|
remote_constraint | Array of remote_constraint objects | Data input constraint |
Parameter | Type | Description |
---|---|---|
dataset | dataset object | Dataset as the data input. |
obs | obs object | OBS in which data input and output stored. |
Parameter | Type | Description |
---|---|---|
id | String | Dataset ID of a training job. |
version_id | String | Dataset version ID of a training job. |
obs_url | String | OBS URL of the dataset required by a training job. ModelArts automatically parses and generates the URL based on the dataset and dataset version IDs. For example, /usr/data/. |
Parameter | Type | Description |
---|---|---|
obs_url | String | OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter | Type | Description |
---|---|---|
data_type | String | Data input type, including the data storage location and dataset. |
attributes | String | Attributes if a dataset is used as the data input. Options:
|
Parameter | Type | Description |
---|---|---|
name | String | Name of the data output channel. |
description | String | Description of the data output channel. |
local_dir | String | Local directory of the container to which the data output channel is mapped. |
remote | remote object | Description of the actual data output. |
Parameter | Type | Description |
---|---|---|
obs_url | String | OBS URL to which data is actually exported. |
Parameter | Type | Description |
---|---|---|
engine_id | String | Engine ID selected for a training job. You can set this parameter to engine_id, engine_name + engine_version, or image_url. |
engine_name | String | Name of the engine selected for a training job. If engine_id is set, leave this parameter blank. |
engine_version | String | Name of the engine version selected for a training job. If engine_id is set, leave this parameter blank. |
image_url | String | Custom image URL selected for a training job. |
Parameter | Type | Description |
---|---|---|
role | String | Role of a heterogeneous training job. Options:
|
algorithm | algorithm object | Algorithm management and configuration. |
task_resource | FlavorResponse object | Flavors of a training job or an algorithm. |
Parameter | Type | Description |
---|---|---|
code_dir | String | Absolute path of the directory where the algorithm boot file is stored. |
boot_file | String | Absolute path of the algorithm boot file. |
inputs | inputs object | Algorithm input channel. |
outputs | outputs object | Algorithm output channel. |
engine | engine object | Engine on which a heterogeneous job depends. |
local_code_dir | String | Local directory to the training container to which the algorithm code directory is downloaded. Ensure that the following rules are complied with: - The directory must be in the /home directory. - In v1 compatibility mode, the current field does not take effect. - When code_dir is prefixed with file://, the current field does not take effect. |
working_dir | String | Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
Parameter | Type | Description |
---|---|---|
name | String | Name of the data input channel. |
local_dir | String | Local path of the container to which the data input and output channels are mapped. |
remote | remote object | Actual data input. Heterogeneous jobs support only OBS. |
Parameter | Type | Description |
---|---|---|
obs_url | String | OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter | Type | Description |
---|---|---|
name | String | Name of the data output channel. |
local_dir | String | Local directory of the container to which the data output channel is mapped. |
remote | remote object | Description of the actual data output. |
mode | String | Data transmission mode. The default value is upload_periodically. |
period | String | Data transmission period. The default value is 30s. |
Parameter | Type | Description |
---|---|---|
obs_url | String | OBS URL to which data is actually exported. |
Parameter | Type | Description |
---|---|---|
engine_id | String | Engine ID of a heterogeneous job, for example, caffe-1.0.0-python2.7. |
engine_name | String | Engine name of a heterogeneous job, for example, Caffe. |
engine_version | String | Engine version of a heterogeneous job. |
v1_compatible | Boolean | Whether the v1 compatibility mode is used. |
run_user | String | User UID started by default by the engine. |
image_url | String | Custom image URL selected by an algorithm. |
Parameter | Type | Description |
---|---|---|
flavor_id | String | ID of the resource flavor. |
flavor_name | String | Name of the resource flavor. |
max_num | Integer | Maximum number of nodes in a resource flavor. |
flavor_type | String | Resource flavor type. Options:
|
billing | billing object | Billing information of a resource flavor. |
flavor_info | flavor_info object | Resource flavor details. |
attributes | Map<String,String> | Other specification attributes. |
Parameter | Type | Description |
---|---|---|
code | String | Billing code. |
unit_num | Integer | Number of billing units. |
Parameter | Type | Description |
---|---|---|
max_num | Integer | Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu | cpu object | CPU specifications. |
gpu | gpu object | GPU specifications. |
npu | npu object | Ascend specifications |
memory | memory object | Memory information. |
disk | disk object | Disk information. |
Parameter | Type | Description |
---|---|---|
arch | String | CPU architecture. |
core_num | Integer | Number of cores. |
Parameter | Type | Description |
---|---|---|
unit_num | Integer | Number of GPUs. |
product_name | String | Product name. |
memory | String | Memory. |
Parameter | Type | Description |
---|---|---|
unit_num | String | Number of NPUs. |
product_name | String | Product name. |
memory | String | Memory. |
Parameter | Type | Description |
---|---|---|
size | Integer | Memory size. |
unit | String | Memory size |
Parameter | Type | Description |
---|---|---|
size | Integer | Disk size. |
unit | String | Unit of the disk size. |
Parameter | Type | Description |
---|---|---|
resource | Resource object | Resource flavors of a training job. Select either flavor_id or pool_id+[flavor_id]. |
volumes | Array of volumes objects | Volumes attached to a training job. |
log_export_path | log_export_path object | Export path of training job logs. |
Parameter | Type | Description |
---|---|---|
policy | String | Resource flavor of a training job. Options: regular |
flavor_id | String | Resource flavor ID of a training job. This parameter is not supported by CPU-powered dedicated resource pools. |
flavor_name | String | Read-only flavor name returned by ModelArts when flavor_id is used. |
node_count | Integer | Number of resource replicas selected for a training job. |
pool_id | String | Resource pool ID selected for a training job. |
flavor_detail | flavor_detail object | Flavors of a training job or an algorithm. |
Parameter | Type | Description |
---|---|---|
flavor_type | String | Resource flavor type. Options:
|
billing | billing object | Billing information of a resource flavor. |
flavor_info | flavor_info object | Resource flavor details. |
Parameter | Type | Description |
---|---|---|
code | String | Billing code. |
unit_num | Integer | Number of billing units. |
Parameter | Type | Description |
---|---|---|
max_num | Integer | Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu | cpu object | CPU specifications. |
gpu | gpu object | GPU specifications. |
npu | npu object | Ascend specifications |
memory | memory object | Memory information. |
disk | disk object | Disk information. |
Parameter | Type | Description |
---|---|---|
arch | String | CPU architecture. |
core_num | Integer | Number of cores. |
Parameter | Type | Description |
---|---|---|
unit_num | Integer | Number of GPUs. |
product_name | String | Product name. |
memory | String | Memory. |
Parameter | Type | Description |
---|---|---|
unit_num | String | Number of NPUs. |
product_name | String | Product name. |
memory | String | Memory. |
Parameter | Type | Description |
---|---|---|
size | Integer | Memory size. |
unit | String | Number of memory units. |
Parameter | Type | Description |
---|---|---|
size | String | Disk size. |
unit | String | Unit of the disk size. Generally, the value is GB. |
Parameter | Type | Description |
---|---|---|
nfs_server_path | String | NFS server path. |
local_path | String | Path for attaching volumes to the training container. |
read_only | Boolean | Whether the volumes attached to the container in NFS mode are read-only. |
Parameter | Type | Description |
---|---|---|
obs_url | String | OBS URL for storing training job logs. |
host_path | String | Path of the host where training job logs are stored. |
Example Requests¶
The following shows how to query a training job whose UUID is 3faf5c03-aaa1-4cbe-879d-24b05d997347.
GET https://endpoint/v2/{project_id}/training-jobs/3faf5c03-aaa1-4cbe-879d-24b05d997347
Example Responses¶
Status code: 200
ok
{
"kind" : "job",
"metadata" : {
"id" : "3faf5c03-aaa1-4cbe-879d-24b05d997347",
"name" : "trainjob--py14_mem06-108",
"description" : "",
"create_time" : 1636447346315,
"workspace_id" : "0",
"user_name" : ""
},
"status" : {
"phase" : "Abnormal",
"secondary_phase" : "CreateFailed",
"duration" : 0,
"start_time" : 0,
"node_count_metrics" : [ [ 1636447746000, 0 ], [ 1636447755000, 0 ], [ 1636447756000, 0 ] ],
"tasks" : [ "worker-0" ]
},
"algorithm" : {
"code_dir" : "obs://test/economic_test/py_minist/",
"boot_file" : "obs://test/economic_test/py_minist/minist_common.py",
"inputs" : [ {
"name" : "data_url",
"local_dir" : "/home/ma-user/modelarts/inputs/data_url_0",
"remote" : {
"obs" : {
"obs_url" : "/test/data/py_minist/"
}
}
} ],
"outputs" : [ {
"name" : "train_url",
"local_dir" : "/home/ma-user/modelarts/outputs/train_url_0",
"remote" : {
"obs" : {
"obs_url" : "/test/train_output/"
}
}
} ],
"engine" : {
"engine_id" : "pytorch-cp36-1.4.0-v2",
"engine_name" : "PyTorch",
"engine_version" : "PyTorch-1.4.0-python3.6-v2"
}
},
"spec" : {
"resource" : {
"flavor_id" : "modelarts.vm.p100.large.eco",
"node_count" : 1,
"flavor_detail" : {
"flavor_type" : "GPU",
"billing" : {
"code" : "modelarts.vm.gpu.p100.eco",
"unit_num" : 1
},
"flavor_info" : {
"cpu" : {
"arch" : "x86",
"core_num" : 8
},
"gpu" : {
"unit_num" : 1,
"memory" : "8GB"
},
"memory" : {
"size" : 64,
"unit" : "GB"
}
}
}
}
}
}
Status Codes¶
Status Code | Description |
---|---|
200 | ok |
Error Codes¶
See Error Codes.