Querying All Trials Using Hyperparameter Search¶
Function¶
This API is used to query all trails using hyperparameter search.
URI¶
GET /v2/{project_id}/training-jobs/{training_job_id}/autosearch-trials
Parameter | Mandatory | Type | Description |
---|---|---|---|
project_id | Yes | String | Project ID. For details, see Obtaining a Project ID and Name. |
training_job_id | Yes | String | ID of a training job. |
project_id | Yes | String | Project ID. For details, see Obtaining a Project ID and Name. |
training_job_id | Yes | String | ID of a training job. |
Parameter | Mandatory | Type | Description |
---|---|---|---|
limit | No | Integer | Number of returned data entries. |
offset | No | Integer | Offset of a data entry. |
Request Parameters¶
None
Response Parameters¶
Status code: 200
Parameter | Type | Description |
---|---|---|
total | Integer | Total number of trials using the hyperparameter search. |
count | Integer | Number of hyperparameter search trials displayed on the current page. |
limit | Integer | Maximum number of hyperparameter search trials displayed on the current page. |
offset | Integer | Current page for all trials searched using hyperparameters. |
group_by | String | Type. |
items | items object | Hyperparameter search items. |
Parameter | Type | Description |
---|---|---|
header | Array of strings | Fields of all trials searched using hyperparameters. |
data | Array<Array<String>> | Each data list of all trials searched using hyperparameters. |
Example Requests¶
The following shows how to query all trial information about the job whose training_job_id is 5b60a667-1438-4eb5-9705-85b860e623dc.
GET https://endpoint/v2/{project_id}/training-jobs/5b60a667-1438-4eb5-9705-85b860e623dc/autosearch-trials
Example Responses¶
Status code: 200
ok
{
"total" : 8,
"count" : 8,
"limit" : 50,
"offset" : 0,
"group_by" : "",
"items" : {
"header" : [ "", "done", "pid", "config", "trial_id", "training_iteration", "time_total_s", "worker_index", "reward_attr", "status", "acc", "loss", "best_reward" ],
"data" : [ [ "0", "True", "314", {
"batch_size" : 32,
"learning_rate" : 0.05512301741232006,
"trial_index" : 0,
"param/batch_size" : 32,
"param/learning_rate" : 0.05512301741232006
}, "ae544174", "2", "19.477163314819336", "", "0.0625", "TERMINATED", "0.0625", "tensor(0.0754, device='cuda:0', requires_grad=True)", "0.0625" ], [ "1", "True", "315", {
"batch_size" : 32,
"learning_rate" : 0.0785570955603036,
"trial_index" : 1,
"param/batch_size" : 32,
"param/learning_rate" : 0.0785570955603036
}, "ae548666", "2", "3.601897954940796", "", "0.0", "TERMINATED", "0.0", "tensor(0.0760, device='cuda:0', requires_grad=True)", "0.0" ], [ "2", "True", "312", {
"batch_size" : 16,
"learning_rate" : 0.04015387428829642,
"trial_index" : 2,
"param/batch_size" : 16,
"param/learning_rate" : 0.04015387428829642
}, "ae54c0ea", "2", "3.5978384017944336", "", "0.1875", "TERMINATED", "0.1875", "tensor(0.1469, device='cuda:0', requires_grad=True)", "0.1875" ], [ "3", "True", "313", {
"batch_size" : 32,
"learning_rate" : 0.0340820322164706,
"trial_index" : 3,
"param/batch_size" : 32,
"param/learning_rate" : 0.0340820322164706
}, "ae5503c0", "2", "3.641200304031372", "", "0.25", "TERMINATED", "0.25", "tensor(0.0716, device='cuda:0', requires_grad=True)", "0.25" ], [ "4", "True", "470", {
"batch_size" : 32,
"learning_rate" : 0.03656488928171769,
"trial_index" : 4,
"param/batch_size" : 32,
"param/learning_rate" : 0.03656488928171769
}, "bef46590", "2", "3.6120550632476807", "", "0.09375", "TERMINATED", "0.09375", "tensor(0.0740, device='cuda:0', requires_grad=True)", "0.09375" ], [ "5", "True", "499", {
"batch_size" : 32,
"learning_rate" : 0.008413169003970163,
"trial_index" : 5,
"param/batch_size" : 32,
"param/learning_rate" : 0.008413169003970163
}, "bef578f4", "2", "3.6379287242889404", "", "0.1875", "TERMINATED", "0.1875", "tensor(0.0723, device='cuda:0', requires_grad=True)", "0.1875" ], [ "6", "True", "528", {
"batch_size" : 64,
"learning_rate" : 0.06297447200613912,
"trial_index" : 6,
"param/batch_size" : 64,
"param/learning_rate" : 0.06297447200613912
}, "bef5c584", "2", "3.711118221282959", "", "0.046875", "TERMINATED", "0.046875", "tensor(0.0381, device='cuda:0', requires_grad=True)", "0.046875" ], [ "7", "True", "557", {
"batch_size" : 32,
"learning_rate" : 0.04426479392014276,
"trial_index" : 7,
"param/batch_size" : 32,
"param/learning_rate" : 0.04426479392014276
}, "bef60684", "2", "3.6971280574798584", "", "0.0625", "TERMINATED", "0.0625", "tensor(0.0778, device='cuda:0', requires_grad=True)", "0.0625" ] ]
}
}
Status Codes¶
Status Code | Description |
---|---|
200 | ok |
Error Codes¶
See Error Codes.