Debezium¶
Function¶
Debezium is a Changelog Data Capture (CDC) tool that can stream changes in real-time from other databases into Kafka. Debezium provides a unified format schema for changelog and supports to serialize messages using JSON.
Flink supports to interpret Debezium JSON and Avro messages as INSERT/UPDATE/DELETE messages into Flink SQL system. This is useful in many cases to leverage this feature, such as:
synchronizing incremental data from databases to other systems
Auditing logs
Real-time materialized view on databases
Temporal join changing history of a database table, etc.
Parameters¶
Parameter | Mandatory | Default Value | Mandatory | Description |
---|---|---|---|---|
format | Yes | None | String | Format to be used. In this example.Set this parameter to debezium-json. |
debezium-json.schema-include | No | false | Boolean | Whether the Debezium JSON messages contain the schema. When setting up Debezium Kafka Connect, enable the Kafka configuration value.converter.schemas.enable to include the schema in the message. |
debezium-json.ignore-parse-errors | No | false | Boolean | Whether fields and rows with parse errors will be skipped or failed. The default value is false, indicating that an error will be thrown. Fields are set to null in case of errors. |
debezium-json.timestamp-format.standard | No | 'SQL' | String | Input and output timestamp formats. Currently supported values are SQL and ISO-8601.
|
debezium-json.map-null-key.mode | No | 'FAIL' | String | Handling mode when serializing null keys for map data. Available values are as follows:
|
debezium-json.map-null-key.literal | No | 'null' | String | String literal to replace null key when debezium-json.map-null-key.mode is LITERAL. |
Supported Connectors¶
Kafka
Example¶
Use Kafka to send data and output the data to print.
Create a datasource connection for the communication with the VPC and subnet where Kafka locates and bind the connection to the queue. Set a security group and inbound rule to allow access of the queue and test the connectivity of the queue using the Kafka IP address. For example, locate a general-purpose queue where the job runs and choose More > Test Address Connectivity in the Operation column. If the connection is successful, the datasource is bound to the queue. Otherwise, the binding fails.
Create a Flink OpenSource SQL job. Copy the following statement and submit the job:
create table kafkaSource( id BIGINT, name STRING, description STRING, weight DECIMAL(10, 2) ) with ( 'connector' = 'kafka', 'topic' = '<yourTopic>', 'properties.group.id' = '<yourGroupId>', 'properties.bootstrap.servers' = '<yourKafkaAddress>:<yourKafkaPort>', 'scan.startup.mode' = 'latest-offset', 'format' = 'debezium-json' ); create table printSink( id BIGINT, name STRING, description STRING, weight DECIMAL(10, 2) ) with ( 'connector' = 'print' ); insert into printSink select * from kafkaSource;
Insert the following data to the corresponding topic in Kafka:
{ "before": { "id": 111, "name": "scooter", "description": "Big 2-wheel scooter", "weight": 5.18 }, "after": { "id": 111, "name": "scooter", "description": "Big 2-wheel scooter", "weight": 5.15 }, "source": { "version": "0.9.5.Final", "connector": "mysql", "name": "fullfillment", "server_id" :1, "ts_sec": 1629607909, "gtid": "mysql-bin.000001", "pos": 2238,"row": 0, "snapshot": false, "thread": 7, "db": "inventory", "table": "test", "query": null}, "op": "u", "ts_ms": 1589362330904, "transaction": null }
View the output through either of the following methods:
Method 1: Locate the job and click More > FlinkUI. Choose Task Managers > Stdout.
Method 2: If you allow DLI to save job logs in OBS, view the output in the taskmanager.out file.
-U(111,scooter,Big2-wheel scooter,5.18) +U(111,scooter,Big2-wheel scooter,5.15)